

# Sociology of the ARGUS Collaboration

R. Armenteros et al. (ed.): Physics from Friends - Papers dedicated to C. Peyrou

D.R.O. Morrison: The Sociology of International Collaborations

- "Spokesman is an outstanding physicist and leader who is the dominant personality in the collaboration"
- "It is important to have at least a second major personality in the collaboration"
- "A collaboration in which there are several major personalities and which is completely democratic does have a problem"

ARGUS spokesmen

Did ARGUS have a problem?



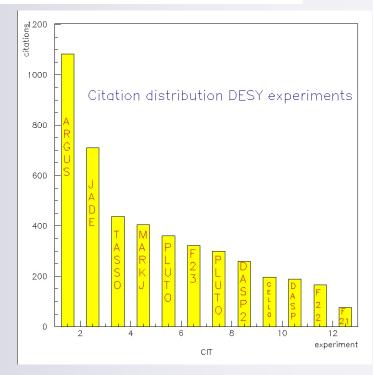
1979-1989



1990-2000

## A fructibus eorum cognoscetis eos (Matth. 7, 16)

#### K. Berkelman 1992:


In particular, the ARGUS

collaboration, about 80 physicists from DESY, several German universities, and others in Canada, Russia, and elsewhere, has been one of the most productive collaborations in the history of experimental high energy physics. ARGUS has been the source of most of the publications of the DESY laboratory since the PETRA machine was shut down about six years ago, over 100 papers on the physics of B mesons, charmed particles,  $\tau$  leptons, and  $\gamma\gamma$  collisions.

#### Particle Physics Experimental Papers

#### Top 20 citation list

| Top 20 citation list |                          |                                           |                    |        |  |
|----------------------|--------------------------|-------------------------------------------|--------------------|--------|--|
| SPIRES, 20.10.2007   |                          |                                           |                    |        |  |
|                      |                          |                                           |                    |        |  |
|                      | Experiment               | Topics                                    | Publication        | Citat. |  |
| 1.                   | Sup.Kamiokande           | Evid. for $\nu$ Oscillations              | PRL,81(1998)1562   | 2921   |  |
| 2.                   | Aubert ea (BNL)          | Observation of J                          | PRL,33(1974)1404   | 1548   |  |
| 3.                   | SNO                      | Evid. for $\nu$ Oscillations              | PRL,89(2002)011301 | 1463   |  |
|                      |                          |                                           |                    |        |  |
| 4.                   | MARK I (SLAC)            | Observation of $\psi$                     | PRL,33(1974)1406   | 1453   |  |
| 5.                   | CDF (FNAL)               | Observ. of Top Quark                      | PRL,74(1995)2626   | 1408   |  |
| 6.                   | SNO                      | Meas. of Rate $\nu_e$ +D                  | PRL,87(2001)071301 | 1404   |  |
| 7.                   | KamLAND                  | Evid.for Anti- $\nu$ Disap.               | PRL,90(2003)021802 | 1397   |  |
| 8.                   | Cristenson (BNL)         | Obs. of CP Violation                      | PRL,13(1964)138    | 1380   |  |
| 9.                   | EMC (CERN)               | Spin Assymetry $\mu$ DIS                  | PL,B206(1988)364   | 1354   |  |
| 10.                  | D0 (FNAL)                | Observ. of Top Quark                      | PRL,74(1995)2632   | 1348   |  |
|                      |                          |                                           |                    |        |  |
| 11.                  | HOMESTAKE                | Meas. of Solar $\nu_{\epsilon}$ Flux      | APJ,496(1998)505   | 1304   |  |
| 12.                  | CHOOZ                    | Limits on $\nu$ Oscillation               | PL,B466(1999)415   | 1259   |  |
| 13.                  | UA1 (CERN)               | Observation of W                          | PL,B122(1983)103   | 1209   |  |
| 14.                  | EMC (CERN)               | Spin Struct. of Proton                    | NP,B328(1989)1     | 1176   |  |
| 15.                  | UA1 (CERN)               | Observation of Z0                         | PL,B126(1983)398   | 1129   |  |
| 16.                  | Herb $\epsilon a$ (FNAL) | Observation of Y                          | PRL,39(1977)252    | 1109   |  |
| 17.                  | ARGUS (DESY)             | Obs. of $B^0\overline{B}^0$ Mixing        | PL,B192(1987)245   | 1089   |  |
| 18.                  | UA2 (CERN)               | Evidence for Z0                           | PL,B129(1983)130   | 1049   |  |
| 19.                  | UA2 (CERN)               | Observation of W                          | PL,B122(1983)476   | 1030   |  |
| 20.                  | Kamiokande               | Atmosph. $\nu_{\mu}/\nu_{\epsilon}$ Ratio | PL,B335(1994)237   | 975    |  |
|                      |                          |                                           |                    |        |  |



Why was ARGUS so successful?

## Conception, Birth and Growth of ARGUS Collaboration

Spring/Summer 1977: H. Schopper, W. Schmidt-Parzefall

14.09.1977: WSP and DW

10.-11.10.1977: Meeting on DESY Experiments, Int.Rep.F15/01 (Nov.1977)

Detector Design Study

C. W. Darolen

H. Hasemann

A. Kroleig

W. Schmidt-Parzefall

H. Schröder

H. - D. Schulz

F. Selonke

R. Wurth

Why

DORIS = gold mine

Charm Spechoscopy

Heavy Lepton (non sequential?)

Upsilon region

Cornell, SPEAR

What

Solid angle

Resolution

Identification

Second Generation ? Last Generation

Delector Components

\*\*\*\*\*\*\*

Open: COST
Name

### T. Walsh

PRIORITIES ISSUES TOPIC CHUNIVERSALITY PARE DECAYS PHERMIONS D ) DO DO WIXING LNONLEPTONIC SIX: 3 NONSCALING Temporious JETS GLUE SPECTROSCOPY 1. T: -ex, MY +CH UNIVERSALITY 2. D: - CUTT, TITT + DO DO MIXING 3. QCD: Y - 3 JETS, GTOT (ete-) 4. SPECTROSCOPY: CE, MOLECULES, CF ATOM 5. TY: → y', → f° Ecm < Z GEV OLD MACHINE 1. "NEW" MACHINE 2. NEW DETECTOR

## ARGUS proposal

Internal Report
DESY F12/Pro 148
October 1978

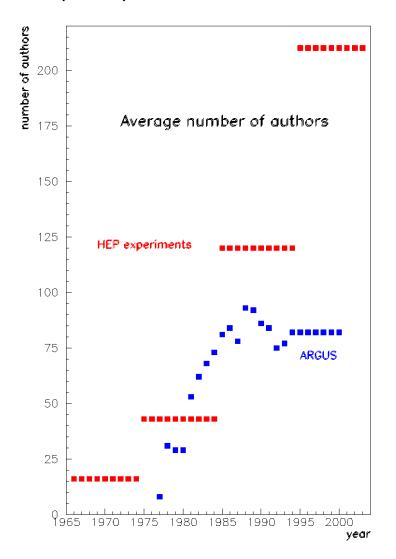
A R G U S

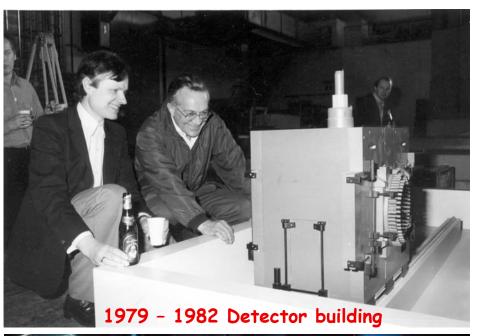
A New Detector for DORIS

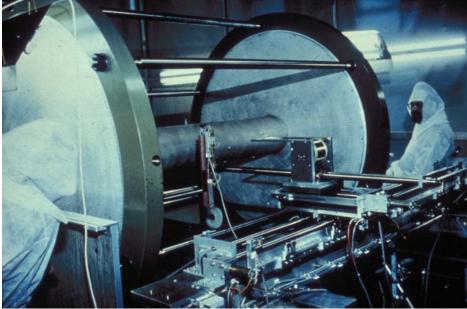
by
A Russian-German-United States-Swedish Collaboration

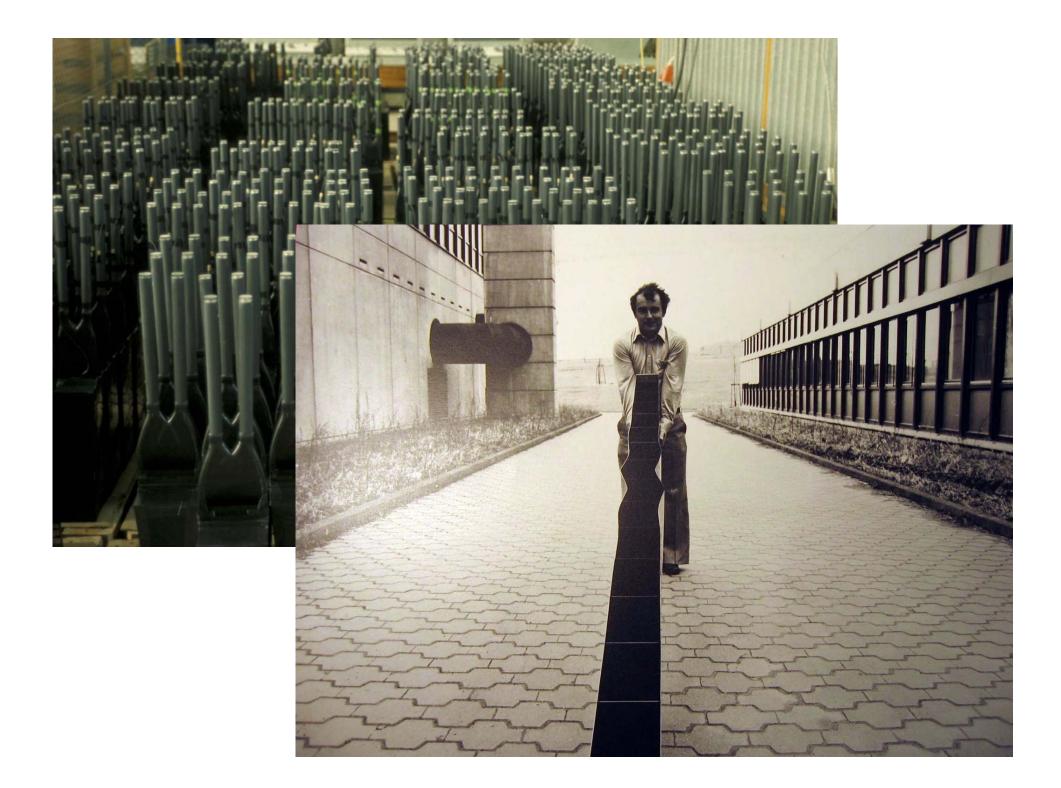
DESY(8) - Dortmund (6) - Heidelberg (3) - Lund (2) - ITEP (9) - South Carolina (2)




October 1978 by yourgst





Proposal accepted June 1979 (Birth of ARGUS)


## IPP Canada and University of Kansas joined

- Sufficient strength /credibility achieved
- Duties for all major detector components and for software covered





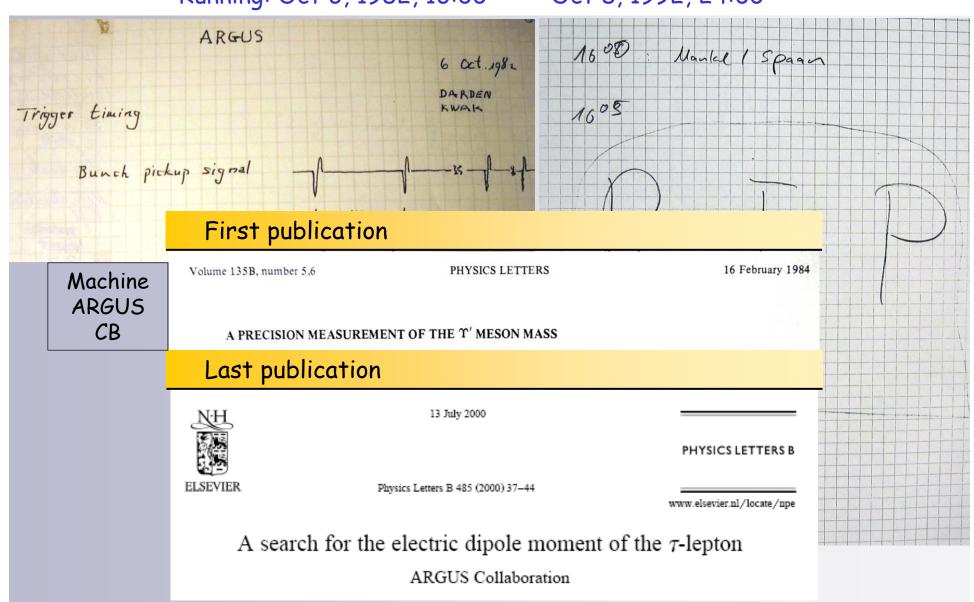






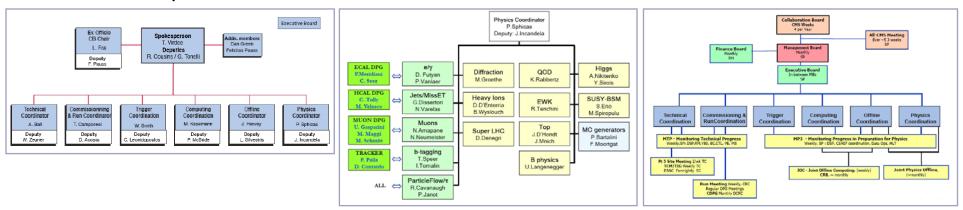





## Why was ARGUS so successful?

- responsibility to build, operate, calibrate major components in one hand
- ▶ 1982-1992 no change of responsibility
- ▶ each PhD student got the chance to achieve hardware experience




## Collaboration in its Maturity

Running: Oct 6, 1982, 16:00 — Oct 8, 1992, 24:00



## a) Organization

Nowadays: CMS



# Coordinators + deputies >> # ARGUS authors

ARGUS: Selforganization



## Zwergenaufstand Teil I

### The uprising of the dwarfs

## 4 Man power estimates

Kapitza,

We tried to set up a rough estimate how many people are needed for all tasks mentioned above under the assumption that all this has to be done as full time job over 6 months.

dE calibration 1 PhD student (plus one "active responsible" post doc / senior in back-ground)

Drifttime-space-relation 1 PhD student (plus one active post doc / senior in background)

SH calibration and tuning of the program 1 diploma student (plus one active PhD student / post doc in the background)

iordered mmarize

TOF-calibration 1 PhD student

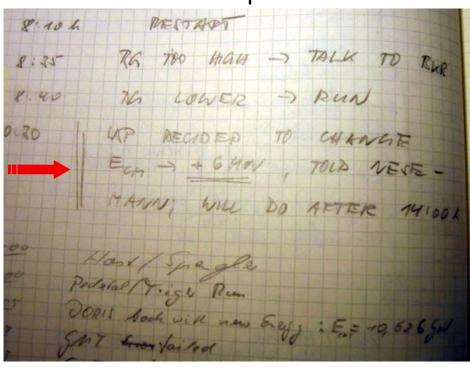
unity to

gs as an

MU-analysis 1 (wo)man

VX-Fit 1 PhD student (plus one very active senior in background)

trackfit/superfit 1 (wo)man


## Extremely successful initiative

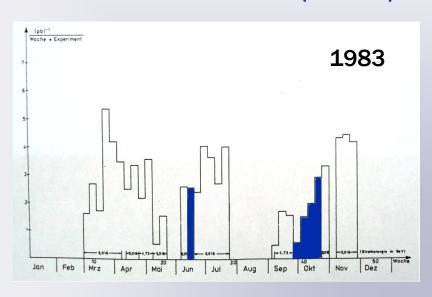
luminosity 1 diploma / PhD student

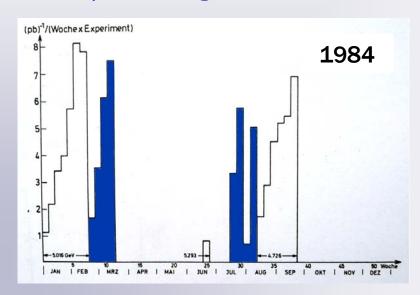
## ARGUS Organization simple

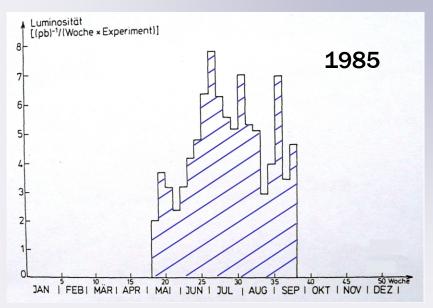


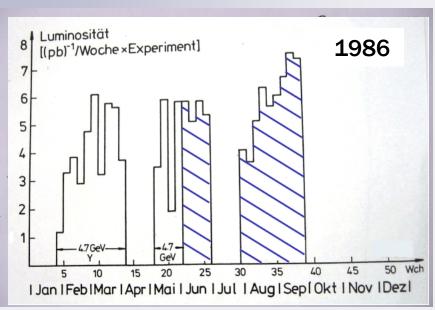
Decisions clear and problem orientated




Time for real work





Problem: Missing dominant physicist being a member of the DESY establishment

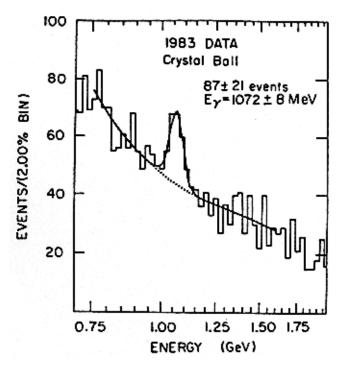

## b) Data taking

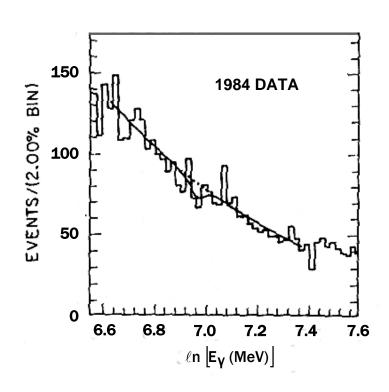
## • Priority to Crystal Ball Physics Program











## b) Data taking

## Why?

## Priority to Crystal Ball Physics Program

- running detector
- Crystall Ball established and successful collaboration with respectable record of discoveries
- observation  $\Upsilon(1S) \rightarrow \gamma X$





- 1984 signal not reproduced
- 1986 "Model which might explain disappearances"
   No signal either

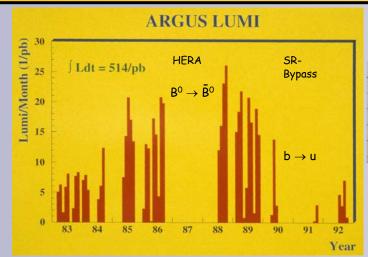
D.R.O.M.:

" ... there are a number of published results which seem exciting and caused great activity, but are finally found to be wrong. It is not easy to say precisely how this occurs, may be by constantly repeating it to one another a surprisingly result becomes acceptable. The problem is when it becomes an article of faith for members of the Collaboration to believe the result."

### **DESY Annual report:**

1984: The differences of the 1983 and 1984 results are not understood.

Studies: different run conditions, check of detector, statistical analysis

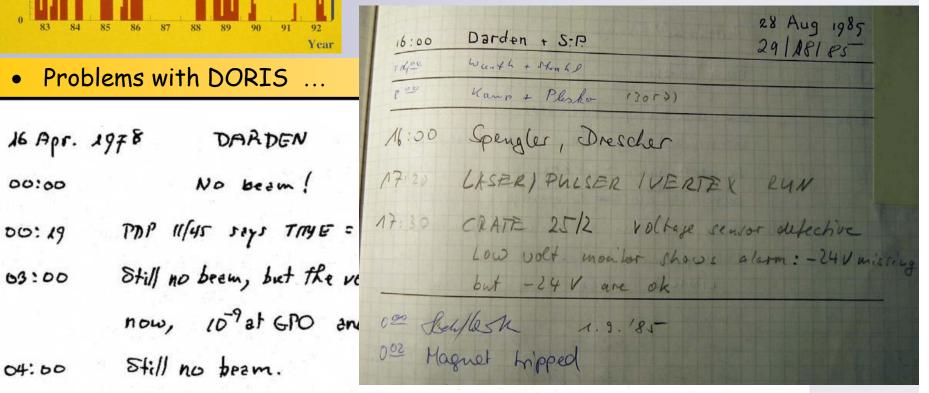

1986: The observation of  $\xi$  has to be interpreted as statistical fluctuation

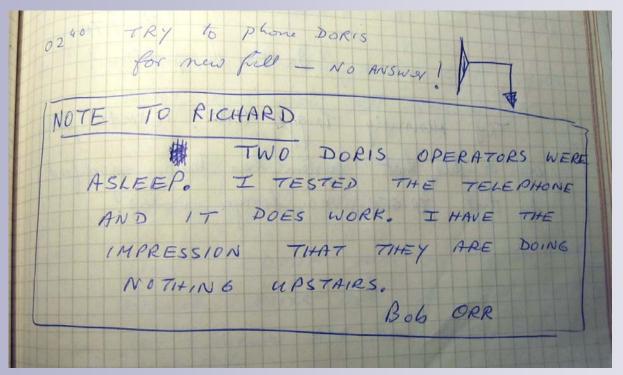
### GOETHE: Der Versuch als Mittler zwischen Subjekt und Objekt

"One may notice that a shrewd intellect brings more artifice to bear the fewer data are available; indeed, to demonstrate his mastery he will select from all available data only those few favorable to his views; the remainder he will arrange so as not to obviously contradict his conclusions; and finally hostile data will be isolated, surrounded and disarmed."

## Priority to Synchrotron radiation

### Electricity Bill



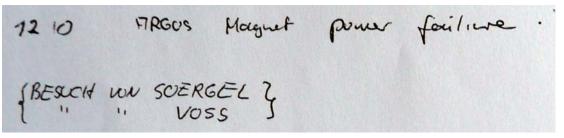


Es wird distribut, Energie eintusparen, Han wird versuelian Does durdlanten en lamen, des obne Grewater. (Nachwill von Soling 1840

#### Problems with DORIS ...

16 Apr. 1978 DARDEN 00:00 No beam! 03:00 Still no been, but the ve Still no beam. 04:00 It is beginning to get light outside

04:30




15 minutes were box with 22:54 because the DORIS cree had for gotten to reinstall the accapers.

NOTE — IF MISHA AND I HAD NOT GONE TO THE CONTROL ROOM THEY MIGHT NEVER HAVE REMEMBERED.

## • ARGUS specific problems ...





PEOPLE SHOULD NOT FOOL AROUND WHILE DATH TAKING! IT WILL ONLY GIVE PROBLEMS.

(hurphys law?)


| This note is deliberately misleading                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------|
| 1 Dec. 82                                                                                                                              |
| IN RESPONSE TO THE REMARK ON P. 193 BY JDP (DRIVER DESCRIPTION TO DESCRIPTION TO Which refers  When investment problem  See below: JOP |
|                                                                                                                                        |
| *TITLE XADRV .IDENT /V1.0/  XADRV -A DR11-W DIRECT MEMORY INTERFACE MODULE DRIVER                                                      |
| OKAY == PEACE! · etc.                                                                                                                  |

# Consolation

The man with the Magic Touch

| 16.9.84  DARDEN then, wiggled, all the CAMAC Capples which connect wiggled, all the centrollers together. |
|-----------------------------------------------------------------------------------------------------------|
| 1400 Cited the problems                                                                                   |
| A very convenient situation! With no expets  around! We like that very much?                              |
| The day's tule:  Better a non-expert on shift  Than an expert not readable!!!                             |

## But also happy days



The real problem: Aging of DC

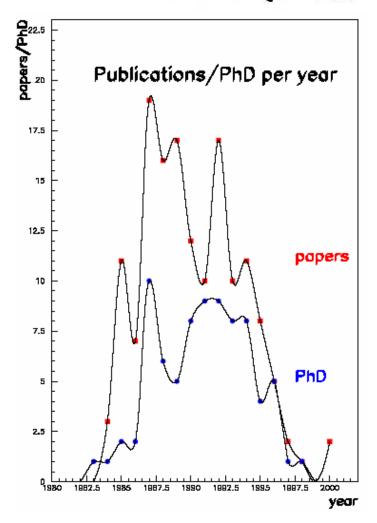
2130

Solution: Water/alcohol



Telephon call from USP

He get from his independent groups (februar + Cherm, ver it is a standard proceedure) the information that an admiration of I raturation premue coeffet H2O addition to the chamber gas stabilities the condition. In order next to roman the running are gut D to 1850V. Should stay there until the H2 admiration procedure is set up


D. W.

## c) Physics

## Why was ARGUS so successful?

WSP 1977: Why

DORIS = gold mine



## Unexpected authors

#### The Decay $D^0 \rightarrow \bar{K}^0 \phi$

**ARGUS** Collaboration

H. Albrecht, U. Binder, P. Böckmann, R. Gläser, G. Harder, I. Lembke-Koppitz, W. Schmidt-Parzefall, H. Schröder, H.D. Schulz, R. Wurth, A. Yagil <sup>1</sup> DESY, D-2000 Hamburg, Federal Republic of Germany

J.P. Donker, A. Drescher, D. Kamp, U. Matthiesen, H. Scheck, B. Spaan, J. Spengler, D. Wegener Institut für Physik, Universität, D-4600 Dortmund<sup>2</sup>, Federal Republic of Germany

J.C. Gabriel, K.R. Schubert, J. Stiewe, K. Strahl, R. Waldi, S. Weseler Institut für Hochenergiephysik, Universität, D-6900 Heidelberg<sup>2</sup>, Federal Republic of Germany

K.W. Edwards<sup>3</sup>, W.R. Frisken<sup>4</sup>, Ch. Fukunaga<sup>5</sup>, D.J. Gilkinson<sup>6</sup>, D.M. Gingrich<sup>6</sup>, H. Kapitza<sup>3</sup>, P.C.H. Kim<sup>6</sup>, R. Kutschke<sup>6</sup>, D.B. MacFarlane<sup>6</sup>, J.A. McKenna<sup>6</sup>, K.W. McLean<sup>7</sup>, A.W. Nilsson<sup>7</sup>, R.S. Orr<sup>6</sup>, P. Padley<sup>6</sup>, J.A. Parsons<sup>6</sup>, P.M. Patel<sup>7</sup>, J.D. Prentice<sup>6</sup>, H.C.J. Seywerd<sup>6</sup>, J.D. Swain<sup>6</sup>, G. Tsipolitis<sup>7</sup>, T.-S. Yoon<sup>6</sup>, J.C. Yun<sup>3</sup>

Institute of Particle Physics 8, Canada

R. Ammar, D. Coppage, R. Davis, S. Kanekal, N. Kwak University of Kansas<sup>9</sup>, Lawrence, KS 66044, USA

J. Stefan ty, YU-61000 Ljublja

B. Boštjančič, G. Kernel, M. Pleško, J. Stefan Institute and Department of Physics, University, YU-61000 Ljubljana <sup>10</sup>, Yugoslavia

L. Jönsson

Institute of Physics, University, S-22362 Lund 11, Sweden

A. Babaev, M. Danilov, A. Golutvin, I. Gorelov, V. Lubimov, V. Matveev, V. Nagovitsin, V. Ryltsov, A. Semenov, V. Shevchenko, V. Soloshenko, V. Tchistilin, I. Tichomirov, Yu. Zaitsev Institute of Theoretical and Experimental Physics, SU-117259 Moscow, USSR

R. Childers, C.W. Darden, Y. Oku
University of South Carolina 12, SC 29208, USA

H. Gennow

University of Stockholm, S-11346 Stockholm, Sweden

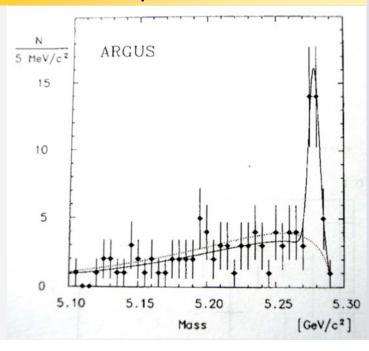
## How wrong results were avoided

 $D_s$ -Meson DESY 84-043 (May 1984) Submitted to Phys.Lett.B 5.1.985

DESY 86-121

Contribution of reflection uncovered early enough




SEARCH FOR  $B_d\overline{B}_d$ MIXING IN  $e^+e^-$ ANNIHILATION AT 10.6 GEV

THE ARGUS COLLABORATION

H.Albrecht, U.Binder, P.Böckmann, R.Gläser, G.Harder, I.Lembke-Koppitz, A.Philipp, W.Schmidt-Parzefall, H.Schröder, H.D.Schulz, R.Wurth, A.Yagil<sup>1</sup> DESY, Hamburg, Germany

J.P.Donker, A.Drescher, D.Kamp, U.Matthiesen, H.Scheck, B.Spaan, J.Spengler, D.Wegener Institut für Physik, Universität Dortmund<sup>2</sup>, Germany

The real problem



Nowadays: R.D.Kohaupt, Damping of Multibunch Oscillations H.S. stopped delivery last moment

 $B^+ \to p\bar{p} \, \pi^+$  exists, but Br factor ~ 100 smaller

#### Reaction

- b → u semileptonically observed and published
- introduction of formal referee system

## d) Importance of Social Life



Collaboration meetings





Trained spokesman

No photo: Heidelberg, Moskau, Montreal, Stade

- Weekly meetings at DESY
- e-mail exchange



## e) Careers

### Seniors

K. Schubert

W. Schmidt-Parzefall

M. Danilov

H. Kolanoski

### **Postdocs**

D.B. MacFarlane

W. Hofmann

H. Schröder

P. Krizan

A. Golutvin

## PhD

B. Spaan

S. Schael

T. Ruf

G. Herrera

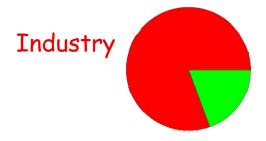
M. Paulini

S. Westerhoff

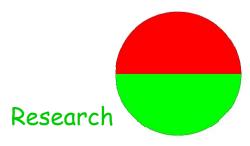
J.A. McKenna

J. Parsons

## Industry


D. Kamp

B. Gräwe

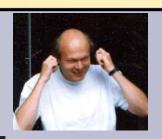

D.Töpfer

•

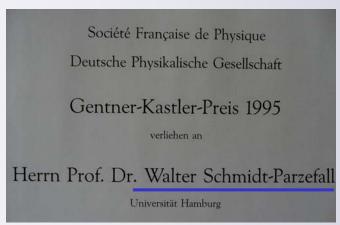
## ARGUS: Present position of former PhD students



81 PhD students




101 Diploma/Master students




## Prizes

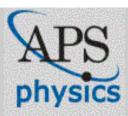
B. Spaan 1989 Benno-Orenstein-Preis für seine Arbeiten auf dem Gebiet der Hochenergiephysik



D.B. MacFarlane 1991 Herzberg Medal 1995 Rutherford Medal








M. Danilov 1996 Max-Planck-Forschungspreis





C. Darden 2004 Russell Research Award



### Division of Particles & Fields

#### 1997 W.K.H. Panofsky Prize in Experimental Particle Physics Recipient

#### Henning Schröder DESY

#### Citation:

"For their leading role in the first demonstration of mixing in the BO – B–O system. The unexpectedly large value of the mixing parameter provided indirect evidence for a large top quark mass and has greatly enhanced the possibility for studying CP violation in B meson decays. This capability has encouraged a worldwide effort to determine whether the small CP violation in K decay is a reflection of a fundamental parameter characterizing transitions of quarks among the three generations."



#### 1997 W.K.H. Pañofsky Prize in Experimental Particle Physics Recipient

#### Yuri Mikhailovich Zaitsev Institute of Theoretical and Experimental Physics

Citation:

"For their leading role in the first demonstration of mixing in the BO – B–O system. The unexpectedly large value of the mixing parameter provided indirect evidence for a large top quark mass and has greatly enhanced the possibility for studying CP violation in 8 meson decays. This capability has encouraged a worldwide effort to determine whether the small CP violation in K decay is a reflection of a fundamental parameter characterizing transitions of quarks among the three generations."



## Why was ARGUS so successful?

- Detector design optimal for pattern recognition
- Responsibilities not changed
- Hermiticity of detector
- Special effective analysis software (H. Albrecht)
- "Best" simulation software (H. Gennow)
- Excellent PhD students
- Original ideas
- A little bit of luck
- Gold mine
- Friendly competition with CLEO

## Wisdom of a real gentleman

12.5.78 15:00 DARDEN New Füllung 16:00 Start run gog. 16:50 IBM Problems. 17:25 19:21 The celebration is still going on in the PLUTO controll room. Hear Dr. Prof. Time is not there any more, but a few stalwarts are dancing and drinking and showing good spirits. The BAZY Cleaning even isn't doing much cleaning, just cleaning up the remaining liaurid in their glerros. In general, it seems that some people, at least, have figured out what life is all about and are making up for lost time. The DAST

## Why was ARGUS so successful?

