CLEO *B* Physics David G. Cassel *Cornell University*

CLEO B Physics

- Before $B^0 \overline{B}^0$ Mixing
- Studying $B^0 \overline{B}^0$ Mixing
- After $B^0 \overline{B}{}^0$ Mixing
- Concluding Remarks

Emphasis is on

- insights
- turning points
- interactions with ARGUS, and
- measurements that are still competitive.

More information on the CLEO history is available in *A Personal History of CESR and CLEO*, by Karl Berkelman World Scientific (2004) http://www.lns.cornell.edu/public/CLNS/2002/CLNS02-1784/history.pdf

ARGUS Symposium – November 9, 2007

CLEO History

CLEO Physics: Discovery or co-discovery $(B^0 \overline{B}^0 \text{ Mixing})$ Confirmation Also: Many other results on Υ s, charm, τ s, and QCD First observation of 2/3 of the charmed baryons Some CLEO-c Physics First Observations: $h_c({}^1P_1)$ f_D Confirmations: $\eta_c(2S)$ Y(4260)Precision Measurements: f_{D_s} M_{D^0} Branching Fractions: Absolute Hadronic: D^0 , D^+ , D_s Semileptonic: D^0 , D^+

Some statistics:

- 455 refereed publications
- 211 CLEO Ph.D. theses
- 30 CESR Ph.D. theses

CLEO I and CLEO II.V Detectors

CLEO I & I.V 1979 – 1989

CLEO II and II.V 1989 – 1999

\mathbf{CESR}

Two Cornell accelerator innovations

- Pretzel orbits Littauer 1985
- Bunch trains Meller 1990
- Utilized in LEP and LEPII

$\Upsilon(3S)$ and $\Upsilon(4S)$

DESY contributed to observations of the Υ states by CLEO and CUSB

- DASP and LENA measured $M_{\Upsilon(2S)} M_{\Upsilon(1S)}$ accurately
- Once we found the $\Upsilon(1S)$, finding the $\Upsilon(2S)$ was quick and easy
- The $\Upsilon(3S)$ and $\Upsilon(4S)$ required more time and effort

$\Upsilon(5S)$ and $\Upsilon(6S)$ and Evidence of B mesons

Evidence of B Mesons

- Leptons come from weak decays (thresholds) and e^+e^- annihilation (smooth)
- A new flavor enhances lepton yields
- CLEO saw enhanced lepton yields at the $\Upsilon(4S)$
 - $\mathcal{B}(B \to Xe\nu) = (13 \pm 3 \pm 3)\%$
 - $\mathcal{B}(B \rightarrow X \mu \nu) = (9.4 \pm 3.6)\%$

CLEO 1981

Exploring B Physics

The period 1981-1986 was an exciting time in B physics!

- Since nothing about B mesons was know, everything was new
- The the long (\gtrsim 1 ps) lifetime of *B* mesons was the big surprise
 - Meant that $|V_{cb}|$ was small compared to $\sin(\theta_C)$
 - Led to the Wolfenstein Parameterization of the CKM matrix
- Many B decay modes were discovered and branching fractions were measured
 - PDG 2007 lists 347 B^0 and 300 B^+ modes and submodes (including upper limits)
 - Hard to pick out any one hadronic mode as particularly significant
- In 1984 CLEO used partial reconstruction of D^{*+} to measure $ar{B}^0
 ightarrow D^{*+} \pi^-$
 - Variations on and improvements on the theme are still used in B physics

Partially reconstruct $ar{B}^0
ightarrow D^{*+} \pi^-$ using:

- p_h of the π^-
- $p_s \text{ of the } \pi^+ \text{ from } D^{*+} o D^0 \pi^+$
- Don't need to measure p_D by reconstructing the D^0
 - Small branching fractions for D^0 to few hadrons

CLEO and $B^0 \overline{B}{}^0$ Mixing

ARGUS's discovery of $B^0 \overline{B}{}^0$ mixing came as a surprise to CLEO

- Large $B^0 \overline{B}{}^0$ mixing opened the door to observation of CP violation in B decay.
 - CP violation is the principal raison d'être for the high interest in B physics
- CLEO published two upper limits before the ARGUS discovery
- CLEO had slightly more luminosity than ARGUS at that time, but the ARGUS (next generation) detector was much better suited for the measurement
- CLEO required two more years and a new detector to confirm ARGUS.

- χ_b values from HFAG reevaluation
- δm_d from these measurements superseded by others, particularly BaBar and Belle

Measuring $|V_{cb}|$ with Inclusive $B \to X_c \ell \nu$ Decay

Large background from $D \to X_s \ell \nu$ decays below $p_\ell = 1.2~{\rm GeV}/c$

- Model dependent $|V_{cb}|$ from models required to extrapolate to $p_\ell = 0~{\rm GeV}/c$
- ARGUS technique: Tag B events with high p_{ℓ} leptons and charge correlations
 - Tagging B's down to $p_{\ell} = 0.6 \text{ GeV}/c$ essentially eliminates model dependence.

This paper included a measurement tagged with high momentum leptons. Did not attempt to decrease the minimum momentum for B decays.

Measuring $|V_{cb}|$ with Inclusive $B \to X_c \ell \nu$ Decay

Measuring $|V_{ub}|$ with Inclusive $B \to X_u \ell \nu$ Decay

Measuring $B \to X_u \ell \nu$ is even more challenging

- Only a very narrow window in p_{ℓ} is useful
- Measurable branching fraction is very small $\mathcal{O}(10^{-4})$
- Background from $B \to X_c \ell \nu$ decays is large
- CLEO and ARGUS both reported $B \to X_u \ell \nu$ signals in 1990
- ARGUS fully reconstructed two events with $B \to X_u \ell \nu$ decays

2.0

2.2

2.4

2.6

 $p_t [GeV/c]$

2.8

3.0

Measuring $|V_{ub}|$ with Inclusive $B \to X_u \ell \nu$ Decay

Model dependence for $|V_{ub}|$ is much more serious than it is for $|V_{cb}|$

- ACCMM model used for CLEO 1984 to CLEO 1993
- CLEO 2000, Babar, and Belle use more recent and rigorous theoretical techniques

* HFAG Average includes BaBar and Belle measurements using other techniques

• $|V_{ub}|$ values from HFAG 2007

Discovery of Radiative Penguin Diagrams

Penguin diagrams were proposed to explain the $\Delta I = \frac{1}{2}$ rule in K decay.

No hard experimental evidence for penguin diagrams for nearly 20 years, until CLEO observed $B \rightarrow K^* \gamma$ decays.

 ${\cal B}(B^0 o K^{*0}(890)\gamma)$

Inclusive $\mathcal{B}(ar{B} o X_s \gamma)$ is much more important than $\mathcal{B}(B^0 \to K^*(890)\gamma)$

- SM rate can be calculated
- Rate sensitive to Higgs and Beyond SM effects in the loop

Concluding Remarks

Congratulations to ARGUS for discovering $B^0 \overline{B}^0$ Mixing!

Some personal thoughts about ARGUS, CLEO, and my experience in CLEO.

- $B^0 \overline{B}{}^0$ mixing and the promise of CP violation were crucial for mustering the community and agency support necessary for the last 20 years of the CLEO program!
- Competition between ARGUS and CLEO was very healthy for both collaborations.
 - It kept us all on our toes and we learned from each other.
- Discovering something
 - Converging upper limits may indicate that a discovery is near.
- Developing a new field
 - Even experienced physicists have a lot to learn.
 - Understanding how to study a new field takes time and creative effort.
- Sustaining an experiment requires detector and luminosity upgrades
- Heavy quark physics with CLEO
 - It was (and still is) a wonderful experience!
 - Now it's time for CLEO members to finish CLEO-c and move on.

Thanks to ARGUS and DESY for including CLEO in this ARGUS Symposium!