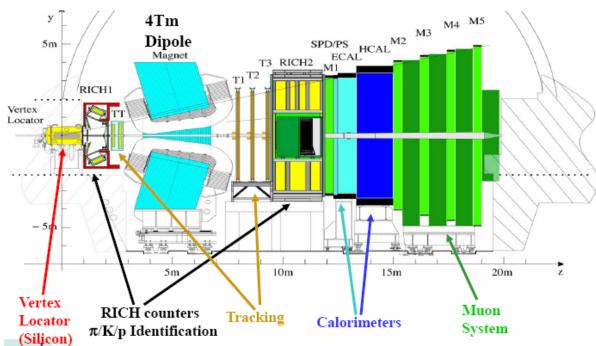
New Physics &

Future B Physics Programs

CP violation Rare Decays

#### Experimental Facilities


- □ LHCb forward spectrometer (running in pp collider mode)

  Data taking starts next year
  - Expect ~10 fb<sup>-1</sup> by 2013

    B physics is also a part of the ATLAS and CMS early program
- □ Super Flavor Factory (SFF) following either SuperKEKB or Super B proposal with an integrated luminosity of 50 75 ab<sup>-1</sup> Start data taking > 2014 (T.Browder et al. arXiv:0710.3799v1)
- □ **Upgraded LHCb (SLHCb)** where they would run at 10 times the initial design luminosity with twice more efficient trigger and record data sample of > 100 fb<sup>-1</sup>
  Start data taking after 2014



- □ Large bb cross section (~230 μb)
- ☐ Forward geometry
- Low luminosity is sufficient At  $2 \times 10^{32}$   $10^{12}$  bb pairs are produced per year





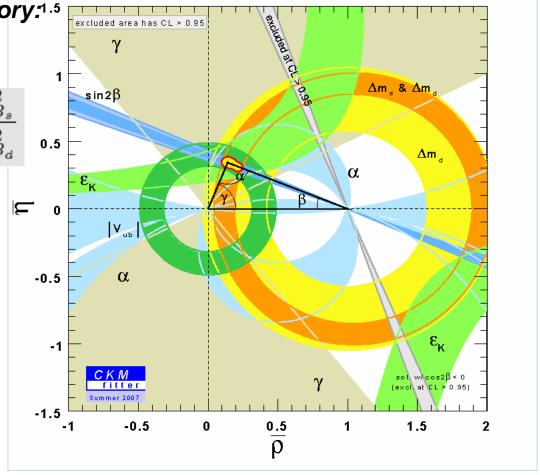
#### Experimental Facilities

- □ LHCb forward spectrometer (running in pp collider mode)
   □ Data taking starts next year
  - Expect ~10 fb<sup>-1</sup> by 2013

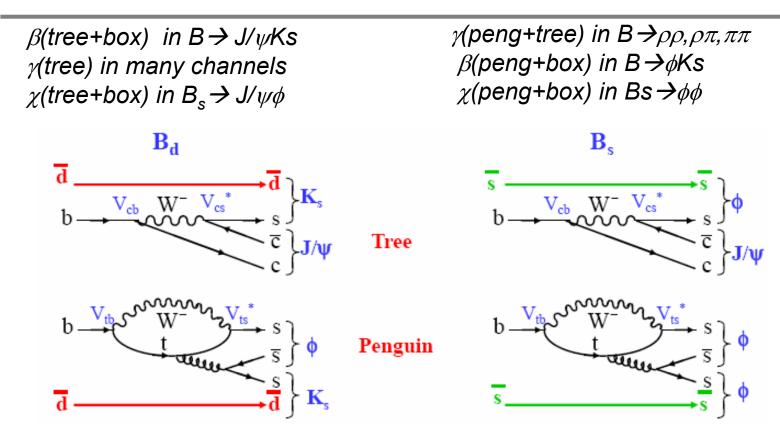
    B physics is also a part of the ATLAS and CMS early program
- □ Super Flavor Factory (SFF) following either SuperKEKB or Super B proposal with an integrated luminosity of 50 75 ab<sup>-1</sup> Start data taking > 2014 (T.Browder et al. arXiv:0710.3799v1)
- □ **Upgraded LHCb (SLHCb)** where they would run at 10 times the initial design luminosity with twice more efficient trigger and record data sample of > 100 fb<sup>-1</sup>
  Start data taking after 2014

#### UT as a standard approach to test the consistency of SM

#### Mean values of angles and sides of UT are consistent with SM predictions


Accuracy of sides is limited by theory:1.5

- Extraction of |Vub|


- Lattice calculation of 
$$\xi^2 = \frac{\hat{B}_{B_s} f_{B_s}^2}{\hat{B}_{B_d} f_{B_d}^2}$$

#### Accuracy of angles is limited by experiment:

$$\alpha = \pm 13^{\circ}$$
 $\beta = \pm 1^{\circ}$ 
 $\gamma = \pm 25^{\circ}$ 



## Search for NP comparing observables measured in tree and loop topologies



New heavy particles, which may contribute to d- and s- penguins, could lead to some phase shifts in all three angles:

$$\delta \gamma(NP) = \gamma(peng+tree) - \gamma(tree)$$

$$\delta \beta(NP) = \beta(B \rightarrow \phi Ks) - \beta(B \rightarrow J/\psi Ks) \neq 0$$

$$\delta \chi(NP) = \chi(B_S \rightarrow \phi \phi) - \chi(B_S \rightarrow J/\psi \phi)$$

## Search for NP comparing observables measured in tree and loop topologies

## Contribution of NP to processes mediated by loops (present status)

#### ☐ to boxes:

```
\beta vs |V_{ub}/V_{cb}| is limited by theory (~10% precision in |V_{ub}|) (d-box) \chi not measured with any accuracy (s-box)
```

#### to penguins:

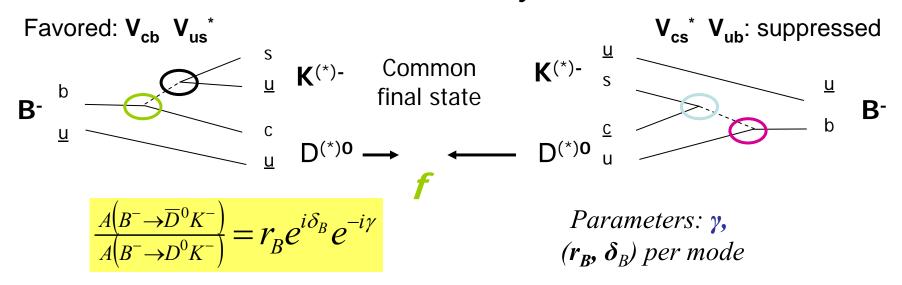
$$\sigma(\delta \gamma(NP)) \sim 30^{\circ}$$
 (d-penguin)  
 $\sigma(\delta \beta(NP)) \sim 8^{\circ}$  (s-penguin)  
 $\sigma(\delta \chi(NP))$  not measured (s-penguin)

PS 
$$\delta\beta(NP) = \delta\chi(NP)$$
  
 $\delta\gamma(NP)$  measured in B  $\rightarrow \pi\pi$  and B  $\rightarrow \rho\rho$  decays may differ depending on penguin contribution to  $\pi\pi$  and  $\rho\rho$  final states

#### $\chi$ : LHC prospects

#### $B_s \rightarrow J/\psi \phi$ is the $B_s$ counterpart of $B^0 \rightarrow J/\psi K_S$

- $\Box$  In SM  $\phi_S$  = 2arg( $V_{ts}$ ) =  $2\Lambda^2\eta \sim -0.04$
- □ Sensitive to New Physics effects in the  $B_s$ - $B_s$  system mixing  $\rightarrow \phi_S = \phi_S(SM) + \phi_S(NP)$
- $\square$  2 CP-even, 1 CP-odd amplitudes, angular analysis needed to separate, then fit to  $\phi_S$ ,  $\Delta\Gamma_S$ , CP-odd fraction
- □ LHCb yield in 2 fb<sup>-1</sup> 131k, B/S = 0.12




| Channels                                          | $\sigma(\phi_s)$ [ rad ] | Weight $(\sigma/\sigma_i)^2$ [ % ] |
|---------------------------------------------------|--------------------------|------------------------------------|
| $B_s \to J/\psi \; \eta(\pi^+ \; \pi^- \; \pi^0)$ | 0.142                    | 2.3                                |
| $B_s \to D_s D_s \\$                              | 0.133                    | 2.6                                |
| $B_s \to J/\psi \; \eta(\gamma \; \gamma)$        | 0.109                    | 3.9                                |
| $B_s 	o \eta_\mathrm{c} \phi$                     | 0.108                    | 3.9                                |
| Combined (pure CP eigenstates)                    | 0.060                    | 12.7                               |
| $B_s 	o J/\psi \phi$                              | 0.021                    | 87.3                               |
| Combined (all CP eigenstates)                     | 0.021                    | 100.0                              |



#### UT angle $\gamma$ : LHCb (BaBAr & BELLE & Tevatron ~12° precision for $\gamma$ at best)

#### ☐ Interference between tree-level decays



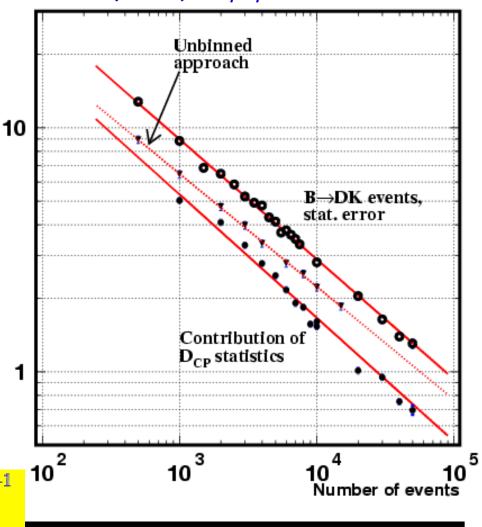
Three methods for exploiting interference (choice of D<sup>0</sup> decay modes):

- ightharpoonup (GLW): Use CP eigenstates of  $D^{(*)0}$  decay, e.g.  $D^0 
  ightharpoonup K + K^-/\pi^+\pi^-$ ,  $K_s\pi^0$
- (ADS): Use doubly Cabibbo-suppressed decays, e.g. D<sup>0</sup> → K<sup>+</sup>π<sup>-</sup>
- $\succ$  (Dalitz): Use Dalitz plot analysis of 3-body D<sup>0</sup> decays, e.g.  $K_s \pi^+ \pi^-$
- ☐ Mixing induced CPV measurement in  $B_s \rightarrow D_s$  K decays Specific for LHCb

#### UT angle $\gamma$ : LHCb summary table

| B mode                                         | D mode                             | Method          | $\sigma(\gamma)$ with 2 $fb^{1}$ |
|------------------------------------------------|------------------------------------|-----------------|----------------------------------|
| B⁺→ DK⁺                                        | $K\pi + KK/\pi\pi + K3\pi$         | ADS+GLW         | 5°-13°                           |
| $B^+ \rightarrow D^*K^+$                       | $K\pi \ (D^* \to D + \pi, \gamma)$ | ADS+GLW         | Under study                      |
| $B^+ \rightarrow DK^+$                         | K <sub>S</sub> ππ                  | Dalitz          | ~8-12°                           |
| $B^+ \rightarrow DK^+$                         | ΚΚππ                               | 4-body "Dalitz" | 18°                              |
| $B^+ \rightarrow DK^+$                         | Кили                               | 4-body "Dalitz" | Under study                      |
| B <sup>0</sup> → DK* <sup>0</sup>              | Kπ + KK + ππ                       | ADS+GLW         | ~6-12°                           |
| B <sup>0</sup> → DK* <sup>0</sup>              | K <sub>S</sub> ππ                  | Dalitz          | Under study                      |
| $B_s \rightarrow D_s K$                        | ΚΚ(φ)π                             | tagged, A(t)    | ~10°                             |
| $B^0\!\!\to\pi^+\pi^-\!,\;\; B_s^{}\to K^+K^-$ | N/A                                | U-spin symmetry | <b>5</b> 0 - <b>10</b> 0         |

Combined precision after 2 fb<sup>-1</sup>  $\sigma(\gamma) \sim 5^{\circ}$  (from tree only)


#### angle $\gamma$ ( $\varphi_3$ ) at SFF

#### Model-independent approach

#### A.Bondar, A.Poluektov Eur.Phys.J C47,347(2006) hep-ph/0510246

- □ 50 ab<sup>-1</sup> at SFF factory should be enough for model-independent γ/φ<sub>3</sub> measurement with accuracy below 2°
- □ 1fb<sup>-1</sup> at ψ(3770) corresponds 2100 CP-tagged  $K_Sπ^+π^-$  events (first estimation based on CLEO-c data by David Asner)
- □ ~10 fb<sup>-1</sup> at ψ(3770) needed to accompany SuperB measurement

•BESIII: 20 fb<sup>-1</sup> ⇒1° systematic



#### LHCb (10fb<sup>-1</sup>) and SFF (50-75 ab<sup>-1</sup>) & SLHCb (>100 fb<sup>-1</sup>) sensitivities



 $S(K_s^0 K_s^0 K_s^0)$ 

|            | Channel                                                                                                     | Yield             | Precision                                                      |
|------------|-------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------|
| γ          | From tree channels                                                                                          |                   | $\sigma(\gamma) < 3^{\circ}$                                   |
| α          | $B_{d} \rightarrow \pi^{+}\pi \pi^{0}$ $B \rightarrow \rho^{+}\rho^{0}, \rho^{+}\rho^{-}, \rho^{0}\rho^{0}$ | 70k<br>45k,10k,5k | $\sigma(\alpha) < 4^{\circ}$                                   |
| β          | $B_d \to J/\psi(\mu\mu)K_S$ $B_d \to \phi K_S$                                                              | 1200k<br>4k       | $\sigma(\sin 2\beta) < 0.01$<br>$\sigma(\sin 2\beta) \sim 0.1$ |
| $\phi_{s}$ | $B_s \to J/\psi(\mu\mu)\phi$ $B_s \to \phi\phi$                                                             | 750k<br>20k       | $\sigma(\phi_s) \sim 0.01$<br>$\sigma(\phi_s) \sim 0.05$       |

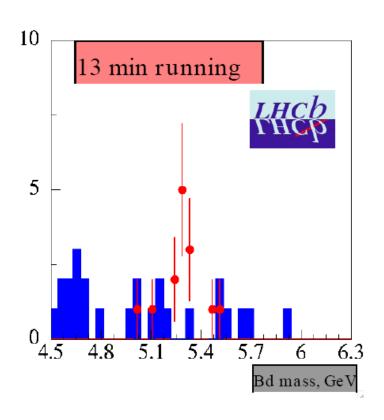
0.02-0.04

| SFF & SLHCb | Observable                                    | Super Flavour Factory sensitivity | SLHCb (stat. only)             |
|-------------|-----------------------------------------------|-----------------------------------|--------------------------------|
|             | $\sin(2\beta) (J/\psi K^0)$                   | 0.005-0.012                       | ~ 0.003                        |
| > 2014      | $\gamma (B \to D^{(*)} K^{(*)})$              | 1–2°                              | < 1 ° (Bs <del>&gt;</del> DsK) |
|             | $\alpha (B \to \pi \pi, \rho \rho, \rho \pi)$ | 1–2°                              | -                              |
|             | $ V_{ub} $ (exclusive)                        | 3-5%                              | -                              |
|             | $ V_{ub} $ (inclusive)                        | 2-6%                              | -                              |
|             | $\bar{\rho}$                                  | 1.7-3.4%                          |                                |
|             | $\bar{\eta}$                                  | 0.7-1.7%                          |                                |
|             | $S(\phi K^0)$                                 | 0.02-0.03                         | $S(\phi K^0_S)$ 0.02-0.03      |
|             | $S(\eta' K^0)$                                | 0.01-0.02                         | $S(\phi\phi)$ 0.01             |

# Search for New Physics in Rare Decays

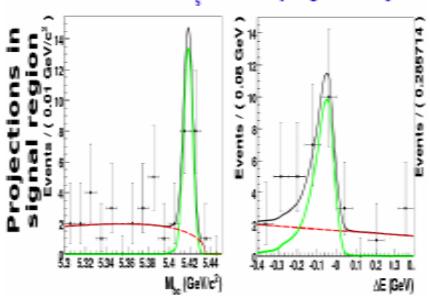
- LHCb
- $\Box$  Exclusive b  $\rightarrow$  s $\gamma$
- **□** *B→K*\**μμ* 
  - **⊃** Bs →μμ

We are just approaching sensitivity promising for discovery...


- SFF
- $\Box$   $B \rightarrow \tau \nu$ ,  $h \nu \nu$ , ...
- $\Box$   $B \rightarrow s\gamma$ , sll inclusive

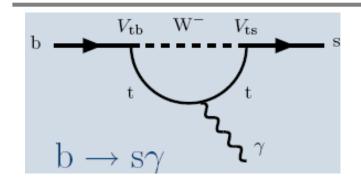
Experimental challenge: keep (backgrounds) under control




#### $b \rightarrow s\gamma$ exclusive

## LHCb control channel: $B_d \rightarrow K^* \gamma$ ~75k signal events per 2fb<sup>-1</sup>




#### $Bs \rightarrow \phi \gamma$ BELLE observed 16±8 events 2 weeks run at Y(5S); no TDCPV

#### First observation of a B radiative penguin decay!



LHCb annual yield ~11k with B/S < 0.6

#### $b \rightarrow s\gamma$ exclusive



$$b \rightarrow \gamma(L) + (m_s/m_b) \times \gamma(R)$$

Measurement of the photon helicity is very sensitive test of SM

#### Methods:

- $\square$  Mixing induced CP asymmetries in  $B_s \rightarrow \phi \gamma$ ,  $B \rightarrow K_s \pi^0 \gamma$
- $\square$  Photon helicity can be measured directly in radiative B decays to final state with  $\geq 3$  hadrons.

Promising channels for LHCb are  $B \rightarrow \phi K \gamma$  and  $B \rightarrow K \pi \pi \gamma$  decays

Expected yield per 2 fb<sup>-1</sup>

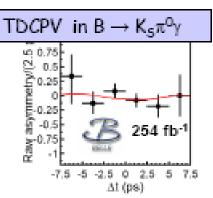
$$BR(B^+ \rightarrow K^+ \pi \pi^+ \gamma) \sim 2.5 \times 10^{-5}$$
 rich pattern of resonances ~60k  $BR(B^+ \rightarrow K^+ \phi \gamma) \sim 3 \times 10^{-6}$  highly distinctive final state ~7k

#### $b \rightarrow s\gamma$ exclusive

#### Mixing induced CP asymmetries

#### $\Box$ $B \rightarrow K_s \pi^0 \gamma$ (B-factories)

$$A_{CP}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(t) \to K_{S}^{0} \pi^{0} \gamma) - \Gamma(B^{0}(t) \to K_{S}^{0} \pi^{0} \gamma)}{\Gamma(\overline{B}^{0}(t) \to K_{S}^{0} \pi^{0} \gamma) + \Gamma(B^{0}(t) \to K_{S}^{0} \pi^{0} \gamma)} = S \sin \Delta m \Delta t + A \cos \Delta m \Delta t$$


$$A_{Belle} = -C_{BaBar}$$

 $S = -(2+O(\alpha_s))\sin(2\beta)m_s/m_b + (possible contribution from b \rightarrow s\gamma g) = -0.022 \pm 0.015$ P.Ball and R.Zwicky hep-ph/0609037

Present accuracy:

$$S = -0.21 \pm 0.40$$
 (BaBar : 232M BB)  
 $S = -0.10 \pm 0.31$  (BELLE: 535M BB)

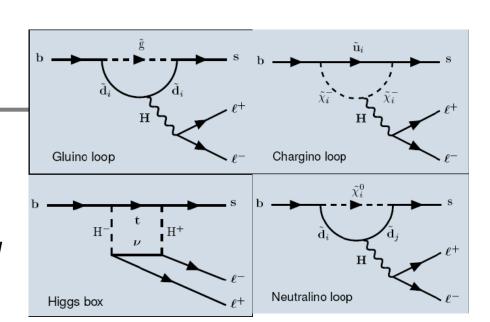
 $S(K_8\pi^0\gamma) =$   $(-0.10\pm0.31\pm0.07)$   $A(K_8\pi^0\gamma) =$   $(-0.20\pm0.20\pm0.06)$   $S(K^*\gamma) =$   $(-0.32\pm0.36\pm0.05)$   $A(K^*\gamma) =$  $(-0.20\pm0.24\pm0.05)$ 



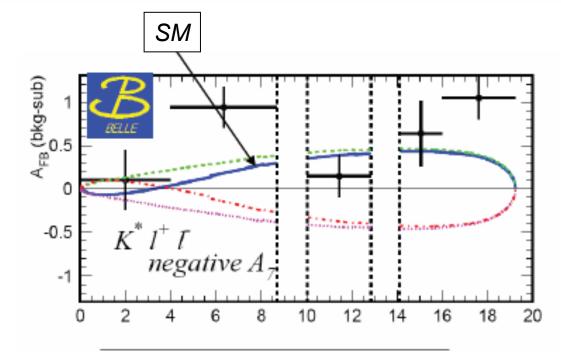
 $\Box$   $B_s \rightarrow \phi \gamma$  (LHCb)

$$\mathcal{A}_{CP}(\Delta t) = \frac{S \sin \Delta m_s \Delta t + A \cos \Delta m_s \Delta t}{\cosh \frac{\delta \Gamma t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\delta \Gamma t}{2}}$$

 $S = \sin 2\psi \sin \phi_s \approx 0$ 

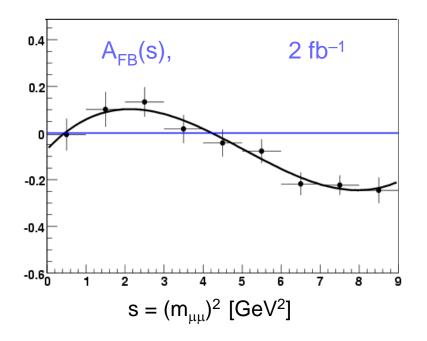

$$\mathcal{A}^{\Delta} = \sin 2\psi \cos \phi_s \approx \frac{2m_s}{m_b}$$

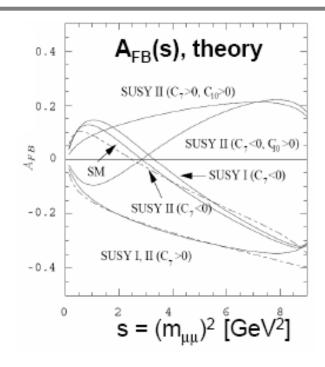
Phys.Rev. D74, 111104 (2006)


LHCb sensitivity with  $10fb^{-1}$ :  $\sigma(A^{\Delta}) = 0.09$ 



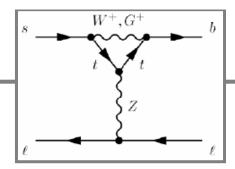
In SM this b >s penguin decay contains right-handed calculable contribution but this could be added to by NP resulting in modified angular distributions





$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_\ell} = \frac{3}{4}F_0\sin^2\theta_\ell + \frac{3}{8}F_T(1+\cos^2\theta_\ell) + A_{FB}\cos\theta_\ell$$




#### $B \rightarrow K^*\mu\mu$ : LHCb prospects


- □ Forward-backward asymmetry  $A_{FB}$  (s) in μμrest frame is a sensitive NP probe
- $\square$  Predicted zero of  $A_{FB}$  (s) depends on Wilson coefficients  $C_7^{eff}$  /  $C_9^{eff}$

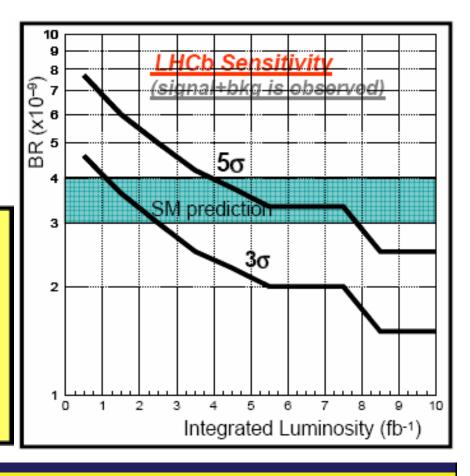




- $\gt$  7.2 k events / 2fb<sup>-1</sup> with B/S ~ 0.4
- ➤ After 10 fb<sup>-1</sup>zero of  $A_{FB}$  located to ±0.28 GeV<sup>2</sup> providing 7% stat. error on  $C_7^{\text{eff}}/C_9^{\text{eff}}$
- Full angular analysis gives better discrimination between models. Looks promising






### Very smal BR in SM

 $(3.4 \pm 0.5) \times 10^{-9}$ 

This decay could be strongly enhanced in some SUSY models. Example: CMSSM

> Current limit from CDF  $BR(Bs \to \mu\mu) < 5.8 \times 10^{-8}$

**LHCb** 0.05 fb<sup>-1</sup>  $\Rightarrow$  overtake CDF+D0 0.5 fb<sup>-1</sup> ⇒ exclude BR values down to SM 2 fb<sup>-1</sup>  $\Rightarrow$  3 $\sigma$  evidence of SM signal 10 fb<sup>-1</sup>  $\Rightarrow$  >5 $\sigma$  observation of SM signal



- → 90% CL exclusion down to SM BR requires: 0.5 fb<sup>-1</sup> for LHCb, ~ 10 fb<sup>-1</sup> for ATLAS/CMS
- → 3σ sensitivity if BR(SM) requires: 2 fb<sup>-1</sup> for LHCb and > 30 fb<sup>-1</sup> for ATLAS/CMS

#### SFF sensitivities for Rare Decays

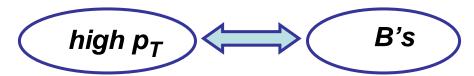
#### Channels complementary to LHCb / SLHCb

| $\mathcal{B}(B \to \tau \nu)$                                  | 3-4%          |
|----------------------------------------------------------------|---------------|
| $\mathcal{B}(B \to \mu\nu)$                                    | 5-6%          |
| $\mathcal{B}(B \to D\tau\nu)$                                  | 2-2.5%        |
| $\mathcal{B}(B \to \rho \gamma)/\mathcal{B}(B \to K^* \gamma)$ | 3-4%          |
| $A_{CP}(b \rightarrow s\gamma)$                                | 0.004 - 0.005 |
| $A_{CP}(b \rightarrow (s + d)\gamma)$                          | 0.01          |
| $S(K_s^0 \pi^0 \gamma)$                                        | 0.02-0.03     |
| $S(\rho^0 \gamma)$                                             | 0.08-0.12     |
| $A^{\rm FB}(B \to X_s \ell^+ \ell^-) s_0$                      | 4–6%          |
| $\mathcal{B}(B \to K \nu \bar{\nu})$                           | 16-20%        |

#### **OUTLOOK**

Clean experimental signature of NP is unlikely at currently operating experiments

#### From now to 2014


A lot of opportunities (LHCb will start data taking next year)

#### Important measurements to search for NP and test SM in CP violation

- $\triangleright \chi$ : if non-zero  $\rightarrow$  NP in boxes < 2010
- $\triangleright \beta$  vs Rb and  $\gamma$  vs Rt (Input from theory!)
- >  $\delta\beta(NP)$  and  $\delta\chi(NP)$ : if non-zero  $\rightarrow$  NP in penguins in Rare decays
- $\rightarrow$  BR(B<sub>S</sub>  $\rightarrow \mu\mu$ ) down to SM prediction < 2010
- Photon helicity in exclusive b →sγ decays
- ➤ FBA & transversity amplitudes in exclusive b →sll decays < 2010

#### **After 2014**

ATLAS and CMS might or might not discovered New Particles. At the same time LHCb might or might not see NP phenomena beyond SM. In either case it is important to go on with B physics at SFF & Upgraded LHCb



Need much improved precision because any measurement in b-system constrains NP models